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Abstract. A review of old inconsistencies of classical electrodynamics (CED) and some new
ideas that solve them is presented. Problems with causality violating solutions of the wave
equation, the electron equation of motion, and problems with the non-integrable singularity of
its self-field energy tensor are well known. The correct interpretation of the two (advanced and
retarded) Lienard–Wiechert solutions are in terms of the creation and annihilation of particles in
classical physics. They are both retarded solutions. Previous work on the short-distance limit of
CED of a spinless point electron are based on a faulty assumption which causes the well known
inconsistencies of the theory: a diverging self-energy (the non-integrable singularity of its self-
field energy tensor) and a causality-violating third-order equation of motion (the Lorentz–Dirac
equation). The correct assumption fixes these problems without any change in the Maxwell’s
equations and let exposed, in the zero-distance limit, the discrete nature of light: the flux of
energy from a point charge is discrete in time. CED cannot have a true equation of motion, only
an effective one, as a consequence of the intrinsic meaning of the Faraday–Maxwell concept of
field that does not correspond to the classical description of photon exchange, but only to the
smearing of its effects in the space around the charge. This, in varied degrees, is transferred
to QED and other field theories that are based on the same concept of fields as space-smeared
interactions.

1. Introduction

Classical and quantum physics are considered to involve sharply distinct concepts and kinds
of theories. Classical physics represents an approximation of the more refined and closer
to a true description of the world which is supposedly done by quantum physics. The
short-distance limit of both has always been plagued by unsurmountable problems, which
in classical electrodynamics (CED) are attributed to the assumed point-like nature of the
electron. Assuming a finite non-zero dimension for the electron brings, however, more
problems than solutions. The blame is not on the point-like electron but on an incorrect
approach of taking the theory zero-distance limit. A more careful approach will free the
theory of these problems and will reveal some quantum aspects which until now were
unsuspected in a classical theory.

The CED of a point electron is based on the Lienard–Wiechert solution (LWS); its
many old and unsolved problems [1–3] make it a non-consistent theory. The Lienard–
Wiechert advanced solution represents itself as a causality problem that has required some,
at least verbal, efforts to be circumvented. One must also mention the field singularity or
the self-energy problem; the non-integrable singularities of its energy tensor; the causality-
violating behaviour of solutions of the Lorentz–Dirac equation [4–8]; etc. It will be shown
here that the solution to these problems is connected to a more strict implementation of
causality (extended causality), already present, although not yet recognized, in the LWS.
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In section 2 the notation is defined in a brief review of the standard interpretation of the
two (advanced and retarded) LWSs. Causality can be seen as a restriction to access to
regions of the spacetime manifold, as discussed in section 3, where the notion of extended
causality is introduced; it allows a new interpretation of the two LWSs in terms of creation
and annihilation of classical particles. The notion of a classical photon is introduced. In
section 4 the singularities and the non-integrability of the electron self-field energy tensor
as they are described in the literature are reviewed and discussed. It is then pointed that
they are all consequences of using an implicit assumption about the zero-distance limit that
will be proved to be faulty in the following section. Section 5 shows how to correctly
take the zero-distance limit in CED and to give it a consistent physical interpretation.
The anticipated recognition in the classical theory of the actual quantum nature of the
electromagnetic radiation is necessary for having a clear physical picture behind these new
mathematical results. Some algorithms, that will be used in the rest of the paper for taking
the zero-distance limit, are presented in section 6. In section 7, while searching for an
electron ‘equation of motion’, it is confirmed by an explicit direct calculation that the old
problem of singularity and non-integrability of the electron self-field energy tensor has
vanished just with correctly taking the zero-distance limit. In this paper we never tamper
with the Maxwell’s equations and the energy tensor. All that is allowed is a possible
reinterpretation of their physical meaning. The most remarkable new feature is that the
energy flux from a point charge is discrete in time, which requires an interpretation of light
in terms of discrete emission of point-like objects (classical photons) and a revision of the
physical meaning of the Gauss’s law and Faraday–Maxwell concept of field. This will be
done in the last section. The electron ‘equation of motion’, derived in section 8, does not
have the problematic Schott term, it is just an effective equation. This is a consequence of
the bilocal character of the LWS, as it depends on two points possibly far apart: the point
where the signal is defined, and the point, in the source worldline, where it was created. It
is then argued that CED cannot produce a true equation of motion for its sources as far as
its formulation is based on the Faraday–Maxwell concept of fields. Section 9 is included
as an appendix of section 8 to show an alternative calculation that enlightens its physical
meaning. The paper is concluded in section 10 with a summary and a discussion of the
physical content of the Maxwell–Faraday concept of field upon which the modern field
theory is entirely based. Gauss’s law is not compatible with the vision of a classical field in
terms of exchange of discrete objects (classical photons) unless the fields represent rather
space average effects taken over a period of time larger than the time interval among the
photon emissions. The Faraday–Maxwell concept of field, which is based on the validity
of the Gauss’s law, represents the smearing over the space surrounding the charge of the
effects of the exchanged photons. The field singularity at the charge position is a reflection
of this smearing process or of the field space-average character.

2. The Lienard–Wiechert solutions

The retarded Lienard–Wiechert potential

A(x) = V

ρ

∣∣∣∣
τret

for ρ > 0 (1)

is a (the retarded one) solution to the wave equation

� A(x) = 4πJ (x) (2)



Classical electrodynamics and the quantum nature of light 6567

and to the gauge condition,

∂A ≡ ∂Aµ

∂xµ
= 0 (3)

whereJ , given by

J (x) =
∫

dτ V δ4[x − z(τ )] (4)

is the current for a point electron that describes a given trajectoryz(τ ), parametrized by its
proper timeτ ; V = dz/dτ . The electron charge and the speed of light are taken as 1.

ρ := −VαRα = −V ηR = −VR (5)

whereη is the Minkowski metric tensor diag(−1, 1, 1, 1), andR := x − z(τ ). ρ is the
invariant distance (in the charge rest frame) betweenz(τret), the position of the charge at
the retarded time, andx, its self-field event (see figure 1). The constraints

R2 = 0 (6)

and

R0 > 0 (7)

must be satisfied. The constraintR2 = 0 requires thatx and z(τ ) belong to a same
light-cone; it has two solutions,τret and τadv, which are, respectively, the points where
J intercepts the past and the future light-cone ofx (see figure 1). The retarded solution
describes a signal emitted atz(τret) and that is being observed atx, with x0 > z0(τret),
while the advanced solution also observed atx, will be emitted in the future, atz(τadv),
with x0 > z0(τadv). R0 > 0 is a restriction to the retarded solution (1) as it excludes the
causality violating advanced solution, and justifies the restriction|τret in (1). But this is not
the only available interpretation; it will be shown below another one that does not have
problems with causality violation and that, remarkably, allows the description of particle
creation and annihilation still in a classical physics context.

3. Causality and spacetime geometry

There is a well known geometric and physical interpretation of the constraint (6).R2 = 0
assures thatA(x) is a signal that propagates with the speed of light, on a light-cone; in field
theory it corresponds to the implementation of the so-calledlocal causality: only points
inside or on a same light-cone can be causally connected. For a physical object it defines,
at a point,its physical spacetime, that is the regions of the space-time manifold that it can
have access to. In the literature, only (6) is clearly associated to the notion of causality
but this is not enough becauseA(x), in CED, is just an ancillary intermediary step to the
Maxwell stress tensor, to whose components, the electric and magnetic fields, are attributed
the physical meaning of force carriers. So, it is necessary to consider variations of (1) and,
therefore of (6). The constraint (6) must be considered in the neighbourhoods ofx and
z: x + dx and z(τret + dτ) must also belong to a same light-cone. Differentiation of (6)
(R dR = 0→ R(dx − V dτ) = 0→ R dx + ρ dτ = 0) generates the constraint

dτ +K dx = 0 (8)

whereK, defined forρ > 0 by

K := R

ρ
(9)
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Figure 1. The usual interpretation of the LWSs. Two spherical waves pass the pointx: the
retarded one, created in the pastτret, and the advanced one, created in the futureτadv. J is the
source of both.

is a null four-vector,K2 = 0, and represents a light-cone generator, a tangent to the light-
cone. Constraint (8) is a condition of consistency of (6). It defines a family of hyperplanes
tangent to the light-cone defined byR2 = 0. Together, these two constraints require thatx

and z(τret) belong to a same straight line, generator of the light-cone with a vertex at the
point x. This generator is the one tangent toKµ, according to (9), and orthogonal toKµ,
according to (8):KµKµ = 0. At the vertex of a light-cone the generators come in pairs:
Kµ := (K0,K) andK̄µ := (K0,−K).

Together, (6) and (8) produce a much more restrictive causality constraint: a free
massless physical object is restricted to remain on its light-cone generator (labelled byK).
This is a very powerful restriction and radically changes the nature of field theory. One is
no longer dealing with distributed fields defined on the whole light-cone but with a localized
object (its(t = constant)-intersection is not a two-sphere but a point!) defined on a light-
cone generator. Or, in other words, the part of a wavefront ofA(x) that moves along a
light-cone generator must remain on this same generator. This is in direct contradiction to
the idea behind the Huyghens’ principle that each point of a wavefront acts as a secondary
source emitting signal to all space directions; in other words, it assumes, at least in principle,
that the signal at a point of a wavefront is made of contributions from all points of previous
wavefronts. This idea could be appropriate for a description of light as a continuous wave
manifestation, but not as a discrete one.
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In contrast, constraints (6) and (8), together, imply from the start that a point on a
wavefront propagates, on its light-cone generator, independently of all the other wavefront
points. Each point of a wavefront, therefore, can be treated as an independent object by
itself. In section 4 it will be shown that each point of a wavefront is created and annihilated
(emitted and absorbed) not in a continuous way as is usually done in classical physics but
in a discrete way, like a photon in quantum physics. It is thus justified to call each point of
an electromagnetic wavefront a classical photon. One can associate the idea of a classical
particle of null mass and dimensions to a classical photon. A classical photon isrelated to
the intersection of (1), with a light-cone generator. The point is that (1) is a solution of (2)
which describes a wave propagating on a light-cone. The appropriate description of a point
propagating along a light-cone generator is done by an equation written in terms of the∇
operator defined below. This is presented elsewhere [11], and will not be discussed here.

The simultaneous imposition of (6) and (8) then corresponds to an extended causality
concept applied to massless objects; it is also readily extensible to massive objects [10].
It is appropriate for descriptions of particle-like fields with discrete interactions, that is,
localized and propagating like a particle. Usually field theories are based on local causality,
but it is possible to build a theory based on this extended causality [11].

Armed with these concepts of extend causality and classical photons one can present
another physical interpretation of the above two LWSs. At the eventx there are two classical
photons. One, that was emitted by the electron currentJ , atz(τret) with x0 > z0(τret), and is
moving in theK generator of thex-light-cone,Kµ := (K0,K). J is its source. The other
one, moving on aK̄-generator,K̄µ := (K0,−K), will be absorbed byJ at z(τadv), with
x0 < z0(τadv). J is its sink (see figure 2). They are both retarded solutions and correspond,
respectively, to the creation and destruction of a classical photon. Exactly this: creation and
destruction of particles in classical physics! This interpretation is only allowed with these
concepts of extended causality and of classical photon; it is not possible with the continuous
wave solutions. It will be instrumental for a clear understanding of how those one-century
old problems of CED are worked out.

4. Energy tensor and integrability

When taking derivatives ofA(x), restriction (8), or equivalently,Kµ = − ∂τret
∂xµ

must be
considered. This can turn a trivial calculation, for the untrained, into a mess. The best and
more fruitful approach, in my opinion, is to takex andτret as five independent parameters,
and absorb restriction (8) in the definition of a new derivative operator∇, replacing the
usual one:

∂

∂xµ
⇒ ∇µ := ∂

∂xµ
+ ∂τ

∂xµ

∂

∂τ
= ∂

∂xµ
−Kµ ∂

∂τ
(10)

or ∇µ := ∂µ −Kµ∂τ , by a shorter notation. Therefore,∂µA(x), with the explicit restriction
|τret, is equivalent to∇µA(x) without any restrictions.

∂µA(x)|τret = ∇µA(x, τ ). (11)

This restriction,|τret, is, therefore, implicitly assumed everywhere in this paper except when
otherwise clearly stated, as for example in the following section when the pointsτret± dτ
are considered. The use of∇, as defined in (11), simplifies the notation, as it is no longer
necessary to carry this restriction|τret.

The geometric meaning of∇ is quite clear; it is the derivative allowed by restrictions (6)
and (8), that is, displacements along theK light-cone generator only. One could complete
the geometric picture seeing the operator∇ as a kind of ‘covariant derivative’ with the
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Figure 2. Creation and annihilation of particle in classical physics as a new interpretation of
the LWS. At x there are two (classical) photons. One, created in the past byJ , at τret, and
propagating along the light-cone generatorK. J is its source. The other one, propagating along
K̄, will be absorbed in the future byJ , at τadv. J is its sink. Both are retarded and point-like
solutions.

connections of a new spacetime geometry [10] that would give a description equivalent to
the old Minkowski spacetime plus generalizations of constraints (6) and (8). This would
correspond to a complete geometrization of the extended causality concept.

It is funny that although the standard view of CED uses the concept of local causality
(that is, only constraint (6)) for interpreting the LWSs, it actually does all further calculation
(the Maxwell stress tensor, for example) according to the rules of the extended causality
concept. In other words, the electromagnetic field obtained from (1) are the variations of
(1) along a light-cone generator.

Therefore,

∇µAν = ∇µ V
ν

ρ
= −Kµa

ν

ρ
− V

ν

ρ2
∇µρ = −Kµ a

ν

ρ
− V

ν(KµE − Vµ)
ρ2

(12)

with

E = 1+ aR = 1+ ρaK (13)

as∇µV ν = −Kµaν and

∇µρ = KµE − Vµ (14)
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whereaK := aK. Observe that the Lorentz gauge condition is automatically satisfied

∇A = −ρaK + V∇ρ
ρ2

= 0 (15)

asVK = −1, V 2 = −1, andV∇ρ = 1− E = −ρaK .
For simplicity we use a notation where [A,B] stands for [Aµ,Bν ] := AµBν−BµAν and

(A,B) stands for(Aµ, Bν) := AµBν +AνBµ. The Maxwell fieldFµν := ∇νAµ−∇µAν , is
found to be

F = 1

ρ2
[K,W ] (16)

with

Wµ = ρaµ + EV µ. (17)

The electron self-field energy–momentum tensor, 4π2 = FF − η

4F
2, is

4πρ42µν = [Kµ,Wα][Kα,W
ν ] − η

µν

4
[Kα,Wβ ][Kβ,Wα] (18)

or in an expanded expression

4πρ42 = (K,W)+KKW 2+WWK2+ η
2
(1−K2W 2) (19)

as KW = −1. The use of rather compact expressions such as (18) instead of (19) is
preferred because besides being compact they will make the calculation of the zero-distance
limit easier in the following sections. WithW 2 = ρ2a2 − E2 = ρ2a2 − (1+ ρaK)2, 2
may be written, according to its powers ofρ, as2 = 22 +23 +24. If the K2-terms are
neglected then

4πρ222|K2=0 = −KK(a2− aK2) (20)

4πρ323|K2=0 = 2KKaK − (K, a + V aK) (21)

4πρ424|K2=0 = KK − (K, V )−
η

2
(22)

which are the usual expressions that one finds, for example in [1–3, 5, 6, 8]. Observe that

K22|K2=0 = 0 (23)

which is important in the identification of22 with the radiated [5] part of2, and that

K23|K2=0 = 0. (24)

The presence of non-integrable singularities in the electron self-field energy tensor is a
major problem.22|K2=0, although singular atρ = 0, is nonetheless integrable. By that
it is meant that it produces a finite flux through a spacelike hypersurfaceσ of normal n,
that is,

∫
d3σ 22n exists [6], while23|K2=0 and24|K2=0 are not integrable; they generate,

respectively, the problematic Schott term in the LDE and a divergent term, the electron
bound four-momentum [5], which includes the so-called electron self-energy. Previous
attempts, based on the distribution theory, for taming these singularities have relied on
modifications of the Maxwell theory with addition of extra terms to2|K2=0 on the electron
worldline (see, for example [5, 6, 8]). They redefine23|K2=0 and24|K2=0 at the electron
worldline in order to make them integrable without changing them atρ > 0, so to preserve
the standard results of CED. But this is always anad hoc introduction of something strange
to the theory. Another unsatisfactory aspect of this procedure is that it regularizes the
above integral but leaves an unexplained and unphysical discontinuity in the flux of four-
momentum,

∫
dx42µν∇νρδ(ρ − ε), through a cylindrical hypersurfaceρ = ε = constant
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enclosing the charge worldline. It is particularly interesting that, as it will be shown in
the sequence, instead of adding anything one should actually not drop out the nullK2-
terms. Their contribution (not null, in an appropriate limit) cancels the infinities. The same
problem occurs in the derivations of the electron equation of motion from these incomplete
expressions of2. The Schott term in the Lorentz–Dirac equation is a consequence; it does
not appear in the equation when the full expression of2 is correctly used. The point is
thatK and2 are defined only forρ > 0. K2 = 0 is also true only forρ > 0. Everybody
in the literature does not use the complete expression (19) for2, but instead the shorter
2|K2=0-expressions when considering the limit ofρ tending to zero. Therefore, there is a
generalized use of an implicit assumption thatK2 remains null at the limitρ = 0. This is
false, as is shown in section 5, and compromises all results in the actual literature.

5. The zero-distance limit

2 is an explicit function ofK andρ. K is defined only forρ > 0,K := R/ρ, and so is also
K2 = 0. At the limiting pointρ = 0 they produce an indeterminacy, asR necessarily also
tends to zero: (R→ 0) or x → z(τret), along the light-cone generatorKµ. By force of the
constraints (6) and (8), asx andz(τret) must remain on the same straight line, the light-cone
generatorK, the limit ρ → 0 necessarily also implies onxµ→ z(τret)

µ or Rµ→ 0.
The indeterminacy ofK = R

ρ
at z(τret), can be evaluated at neighbouring points

τ = τret ± dτ by the L’Hôpital’s rule and ∂
∂τ

(see figure 3). This application of the
L’H ôpital’s rule then corresponds then to finding two simultaneous limits:ρ → 0 and
τ → τret.

As

∂τρ ≡ ρ̇ = −(1+ aR) (25)

and

Ṙ = −V (26)

then

lim
ρ→0
τ→τret

K| R2=0
R dR=0

= V. (27)

This double limiting process is of course distinct of the single(ρ → 0)-limit, which cannot
avoid the singularity. For the simplicity of notation the use of just limρ→0 will be kept but
always with the implicit meaning of this double limit as indicated in (27). For example, by

lim
ρ→0

K2 = −1 (28)

it is meant

lim
ρ→0
τ→τret

K2| R2=0
R dR=0

= −1. (29)

This invalidates all previous results in the literature on the CED short-distance behaviour
because they have all been obtained from2|K2 as it is valid only forρ > 0; but then it
could not be used in the (ρ → 0)-limit. Besides, the correct limit (27) has not been used.

This limit (27) and the geometry behind it require a consistent physical interpretation
that implies on a new connection between classical and quantum physics. The classical
electromagnetic interaction between two point charges as described by the LWSA(x),
comprises the entire light-cone,R2 = 0, that is, all the space surrounding each charge. But
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K

K

K

- d  tτ ret

τ
ret

+ d ττ
ret

Figure 3. Double limiting process:x → z alongK andτ → τret. The single limiting process
x → z(τret) alongK (or ρ → 0) does not solve the indeterminacy in the definition ofK at
ρ = 0. K = x−z(τret)

ρ
for ρ > 0. It takes a second simultaneous limitτ → τret along the

electron worldline.

the simultaneous imposition ofR2 = 0 andR dR = 0 (or dτ + K dx = 0) implies that
only the part ofA(x) contained in the light-cone generator,K, connecting the two charges
must be considered at a time. This is the possible description, in classical physics, of the
electromagnetic fundamental interaction: the exchange of a single photon. The light-cone
generator is the photon classical trajectory (see figures 2 and 4). Now it is possible to
understand the reasons of the( 0

0)-indeterminacy atτ = τret. In the limit of ρ → 0 at
τ = τret there are three distinct velocities:K, the photon four-velocity, andV1 and V2,
the electron initial and final four-velocities. The singularity atτret is not associated to any
infinity but to an indeterminacy in the tangent of the electron worldline. Atτ = τret+ dτ
there is onlyV2, and onlyV1 at τ = τret− dτ . In other words,τret is an isolated singular
point on the electron worldline; its neighbouring pointsτret± dτ are not singular. This is
in flagrant contradiction to the CED assumption of a continuous emission process, because
in this case, all points on the electron worldline would be singular points, likeτret. This
completes the justification for the introduction of the classical photon concept: the part of
the electromagnetic interaction contained in a light-cone generator is independent of the
other parts contained in the other light-cone generators and, besides, it is discretely emitted
and absorbed. There is a classical photon atτret but there is none atτret± dτ . This picture
will receive a further confirmation by the calculation of the energy flux from the charge
at z(τret ± dτ), in section 7. It is remarkable that one can find in a classical (Lienard–
Wiechert) solution these traits of the quantum nature of the radiation emission process.
They show a new bridge between classical and quantum field theories: the classical field is
an effective representation of the effects of a photon exchange smeared in the charge light-
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cone.R2 = 0 andR dR = 0 establish an extended constraint of causality that retrieves the
interaction one-photon-exchange character from the smeared-interaction field.

6. Some useful mathematical tools

To find this double limit of something whenρ → 0 andτ → τret will be done so many
times in this paper that it is better to do it in a more systematic way. One wants to find

lim
ρ→0

N(R, . . .)

ρn
(30)

where N(R, . . .) is a homogeneous function ofR, N(R, . . .)|R=0 = 0. Then, one
has to apply the L’Ĥopital’s rule consecutively until the indeterminacy is resolved. As
∂ρ

∂τ
= −(1+ aR), the denominator of (30) atR = 0 will only be different to zero after the

nth-application of the L’Ĥopital’s rule, and then, its value will be(−1)nn!.
If p is the smallest integer such thatN(R, . . .)p|R=0 6= 0, whereN(R)p := dp

dτp N(R, . . .),
then

lim
ρ→0

N(R, . . .)

ρn
=


∞ if p < n

(−1)n
N(0, . . .)p

n!
if p = n

0 if p > n.

(31)

• Example 1:

{
K = R

ρ
n = p = 1H⇒ limρ→0K = V

K2 = RηR

ρ2 n = p = 2H⇒ limρ→0K
2 = −1.

• Example 2: [K,a]
ρ
= [R,a]

ρ2 H⇒ p = 1< n = 2H⇒ limρ→0
[K,a]
ρ

diverges.

• Example 3: aK
ρ

[K,V ] = − aR
ρ3 [R,V ] H⇒ p = 4> n = 3, limρ→0

aK
ρ

[K,V ] = 0.

• Example 4: [K,V ]
ρ2 = [R,V ]

ρ2 H⇒ p = 2< n = 3H⇒ limρ→0
[K,V ]
ρ2 diverges.

Finding these limits for more complex functions can be made easier with two helpful
expressions,

Np =
p∑
a=0

(
p

a

)
Ap−aBa (32)

and

Np =
p∑
a=0

a∑
c=0

(
p

a

)(
a

c

)
Ap−aBa−cCc (33)

valid whenN(R) has, respectively, the formsN0 = A0B0, or N0 = A0B0C0, whereA, B
andC represent possibly distinct functions ofR, and the subindices indicate the order of
d/dτ . For example:A0 = A; A1 = ∂τA; A2 = ∂2

τ A, etc. So, for using (31)–(33), one just
has to find theτ -derivatives ofA, B andC that produce the first non-zero term at the point
limit of R→ 0.

Consecutive derivatives of products of complex functions can become unwieldy. So it
is worth introducing the concept of ‘τ -order’ of a function, meaning the lowest order of the
τ -derivative of a function that produces a non-zero result at the limiting pointR = 0. Let
O[f (x)] represent the ‘τ -order’ of f(x). So, for example, from (25) and (26) one sees that

O[R] = 1 (34)

O[ρ] = 1. (35)
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As ∂τ (aR) = −ȧR and∂2
τ (aR) = −äR − ȧV = −äR + a2 = a2+O(R), then

O[aR] = 2. (36)

For finding theNp of (32) and (33) it is then necessary to consider only the terms with the
lowestτ -order on each factor.

Some combinations of terms have derivatives that cancel parts of each other resulting
in a higherτ -order term. For example,

∂τ (R
2+ ρ2) = +2ρ − 2ρE = −2ρaR

∂2
τ (R

2+ ρ2) = 2EaR − 2ρȧR = 2(aR − ρȧR)+O(R4)

∂3
τ (R

2+ ρ2) = 2(ȧR + EȧR − ρa2)+O(R3) = 4ȧR − 2ρa2+O(R3)

∂4
τ (R

2+ ρ2) = 4a2+ 2a2+O(R2) = 6a2+O(R2).

So,

O[R2+ ρ2] = 4

although

O[R2] = O[ρ2] = 2.

Observe that one has to care only with the lowestτ -order terms as the other ones, grouped in
O(R), will not survive the limitR→ 0. Also, it is not necessary to write theτ -derivatives
of factors that will not reduce itsτ -order. For example in

∂τ (RV +O(R2)) = −VV +O(R2)

the termRa was absorbed inO(R2). In this way we avoid writing and taking unnecessary
derivatives of long expressions with terms that will not contribute to the final result.

An important property ofO[f (x)]:

O[ABC] = O[A] +O[B] +O[C] (37)

so that,p as defined by (31) and (33), is

p = O[ABC] = O[A] +O[B] +O[C]. (38)

7. Fluxes and equation of motion

The motion of a classical electron [1–3] is described by the Lorentz–Dirac equation,

ma = FextV + 2
3(ȧ − a2V ) (39)

wherem is the electron mass andFext is an external electromagnetic field. The presence of
the Schott term,23 ȧ, is the cause of all of its pathological features, such as microscopic non-
causality, runaway solutions, pre-acceleration, and other bizarre effects [4]. On the other
hand, its presence is apparently necessary for the energy–momentum conservation; without
it, it would require a contradictory null radiance for an accelerated charge, asaV = 0,
VFextV = 0 andȧV +a2 = 0. This makes the Lorentz–Dirac equation the greatest paradox
of classical field theory as it cannot simultaneously preserve both the causality and the
energy conservation [1–3].
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The Lorentz–Dirac equation can be obtained from energy–momentum conservation,
which leads to∫ τ2

τ1

dτ (FµνextVν −maµ) = lim
ε1→0
ε2→∞

∫
V

dx4∇ν2µνθ(ε2, ρ, ε1)θ(τ2, τ, τ1)

= lim
ε1→0
ε2→∞

∫
V

dx42µν{∇νρ(θ(ρ − ε1)δ(ε2− ρ)

−δ(ρ − ε1)θ(ε2− ρ))θ(τ2, τ, τ1)

+∇ντ (δ(τ2− τ)θ(τ − τ1)− θ(τ2− τ)δ(τ − τ1))θ(ε2, ρ, ε1)} (40)

whereθ(a2, x, a1) = θ(a2−x)θ(x−a1), the product of two Heaviside functions, andτ2, τ1,
ε2 andε1 are constants, withτ2 > τ1 andε2 > ε1. θ(τ2, τ, τ1) = θ(τ2− τ)θ(τ − τ1) defines
the spacetime region between the two light-cones of vertices atτ2 andτ1. The product of
these four Heaviside functions defines the closed boundary of an hypervolume that is totally
inside the integration domainV. The passage from the first to the second and third lines of
(40) involves integration by parts, the divergence theorem and the use of

2µνθ(ε2, ρ, ε1)θ(τ2, τ, τ1)|∂V = 0. (41)

∇ν2µν = 0 in the hypervolume, forε1 > 0, assures that the integral on the RHS of the
first line of (40) is null for anyε1 > 0, but not, as it will be shown now, in the limit when
ε1 tends to zero. This approach is equivalent to one where2µν is treated as a distribution
[6, 8]. Both are equally rigourous and give the same results, but this one is simpler as it
dispenses the use of a compact test function, which is replaced byθ(ε2− ρ), in its role of
allowing a compact domain of integration. No infinity appears in this approach and so it
is not necessary to consider the distribution character of2µν . The terms in the second and
third lines of (40) are the fluxes of energy–momentum through the respective hypersurfaces
ρ = ε1, ρ = ε2, τ = τ2 andτ = τ1. They are well known in the literature [1, 7], forε1 > 0.
The flux on a Bhabha tubeρ = ε > 0 is given by

81(ε)
µ =

∫
dx42µν∇νρδ(ε − ρ)θ(τ2, τ, τ1). (42)

With

W∇ρ ≡ 0 (43)

KW = −1 (44)

K∇ρ = 1+K2E (45)

andK2 = 0, asε > 0, in (18) one has

4πρ42∇ρ = W +K
(
W 2+ E

2

)
− 1

2V = ρa + V (ρaK + 1
2)

+K(ρ2(a2− a2
K)− 1

2(1+ 3ρaK)). (46)

Now using retarded coordinates [5, 6, 12] where d4x = dτ ρ2 dρ d2�, and

1

4π

∫
d2�Kα = V α (47)

1

4π

∫
d2�KαKβ = 1

3
1αβ + V αV β (48)

1

4π

∫
d2�KαKβKγ = 1(αβV γ ) + V αV βV γ (49)
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where1 = η+VV , and the parenthesis on the superscripts mean total symmetrization, one
has for (42)

81(ε)
µ =

∫ τ2

τ1

dτ

(
2

3
a2V µ − a

µ

2ε

)
. (50)

The total flux on the sections 0< ε1 < ρ < ε2 of the light-conesτ = τ2 andτ = τ1 is
given by

82(ε2)
µ −82(ε1)

µ = −
∫

dx42µνKνθ(ε2, ρ, ε1)(δ(τ2− τ)− δ(τ − τ1))

= 1

2
(V (τ2)

µ − V (τ1)
µ)

(
1

ε2
− 1

ε1

)
= 1

2

∫ τ2

τ1

dτ aµ
(

1

ε2
− 1

ε1

)
(51)

as∇ντ = −Kν and 4πρ42K = 1
2K, for ρ > 0. In the notation used in (51),82(ε2) and

82(ε1) are, respectively, the upper and the lower limit of theρ-integration in (51):

82(ε2) = 1

2

∫ τ2

τ1

dτ
a

ε2
(52)

and

82(ε1) = 1

2

∫ τ2

τ1

dτ
a

ε1
. (53)

One then sees from (42) and (51) that the integral on the RHS of the first line of (40) is
equal to∫

dx4∇ν2µνθ(ε2, ρ, ε1)θ(τ2, τ, τ1) = 81(ε2)−81(ε1)+82(ε2)−82(ε1) (54)

and that this (the RHS) is identically null, for anyε1 > 0, which is in agreement with
∇ν2µν being null atρ > 0. These results can be extended toε2→∞ but not toε1→ 0
because of the explicit dependence of2µν on the null four-vectorK, which is defined only
for ρ > 0. At ρ = 0 its definition (K = R

ρ
) gives an indeterminacy. In the literature it

is implicitly assumed thatK remains a null four-vector at the limitingρ = 0. Besides not
being correct, as it has been shown, this produces a diverging flux (the self-energy problem)
and the controversial Schott term in the Lorentz–Dirac equation.

In the (ε2 → ∞)-limit one has82(ε2 = ∞) = 0 and81(ε2 = ∞) =
∫ τ2

τ1
dτ 2

3a
2V µ.

Therefore, with (42) and (51), equation (40) can be written as∫ τ2

τ1

dτ (FµνextVν −maµ) = − lim
ε1→0
{82(ε1)

µ +81(ε1)
µ} +

∫ τ2

τ1

dτ 2
3a

2V µ. (55)

Equations (31)–(33) will now be used to find the(ε1 → 0)-limit of 81(ε1) =∫ τ2

τ1
dτ ρ2 dρ d2�2∇ρδ(ρ − ε1). But in (18), the definition of2, the second term is the

trace of the first one and so one just has to consider this last one because the behaviour
of its trace under this limiting process can then easily be inferred. So, asK = R/ρ, and
∇ρ = (KE − V ), one has schematically for the first term of (18) inρ22∇ρ,

lim
ρ→0

N(R, . . .)

ρn
= lim

ρ→0

ρ2[K,W ][K,W ](KE − V )
ρ4

= lim
ρ→0

[R,W ][R,W ](RE − Vρ)
ρ5

.

(56)
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Then, from the comparison with (30) and (33),

A0 = B0 = [R,W ] = [R, aρ + VE] = [R, aρ + V ] +O(R3)

A1 = B1 = [−V, ρa + V ] + [R,−aE + a] +O(R2) = −[V, ρa] +O(R2)

A2 = B2 = −[a, V ] +O(R)
(57)

C0 = RE − Vρ = R − Vρ +O(R3)

C1 = −V − aρ + VE +O(R2) = −aρ +O(R2)

C2 = a +O(R).
(58)

Therefore, for producing a possibly non-zeroNp, according to (33),a, c and p must be
given by

c = 2

p − a = a − c = 2H⇒ p = 6> n = 5.

Or in a briefer way,

O[[R,W ]] = 2

O[RE − Vρ] = 2

and then, using (38),

p = 2O[[R,W ]] +O[RE − Vρ] = 6> n = 5.

Therefore,

lim
ε1→0

81(ε1) = 0. (59)

The flux of energy and momentum of the electron self-field through the(ρ = ε1)-
hypersurface in (40) is null atε1 = 0. This is a new result, a consequence of (27). In
the standard approach, with the uncomplete expressions of2µν , the contribution from this
term produces the problematic Schott term and a diverging expression, the electron bound-
momentum which requires mass renormalization [9]. In (59) if one had used theK2-terms
expurgated energy tensor, which is the one used in the literature, one would have found an
infinity on its RHS, even using (27). TheK2-terms in (18) cancel the infinities.

For the evaluation of limε1→082(ε1) one finds from (19) andKW = −1 that

4πρ22µνKν = Kµ

2ρ2
(1−K2W 2) = Kµ

2

{
1+K2

ρ2
− 2

K2aK

ρ
−K2(a2− aK2)

}
(60)

and

4π
∫

dρ ρ22µνKν = −K
µ

2

{
1+K2

ρ
+ 2K2aK ln ρ +K2(a2+ aK2)ρ

}
. (61)

But, again from comparison with (30)–(33),

lim
ρ→0

Kµ(1+K2)

ρ
= Rµ(ρ2+ R2)

ρ4
= 0 (62)

asO[R] +O[ρ2+ R2] = 1+ 4> 4.
Also, as

O[KµK2aK] = 1 (63)

one can say from (35) that

lim
ρ→0

KµK2aK ∼ lim
ρ→0

ρ (64)
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that is,KµK2aK tends to zero withρ as fast asρ. So,

lim
ρ→0

KµK2aK ln ρ = lim
ρ→0

ρ ln ρ = 0. (65)

The last term of (61) is also null in the(ρ → 0)-limit, and so one can conclude that

lim
ρ→0

82(ε1) = 0. (66)

The meaning of (59) and (66): atρ = 0 andτ = τret± dτ there is only the electron! No
self-field, no photon! The flux from the charge is zero forτret±dτ and, of course, non-zero
at z(τret). This confirms the picture of a discrete radiation process. It takes the limiting
ρ → 0 to be seen because atρ > 0 it is masqueraded by the field average character, as
will be discussed later. This is in contradiction to the Gauss’s law! It requires a revision
of its physical meaning and of the Maxwell–Faraday concept of field, which will be done
in section 9. First, one should discuss the issue of the electron equation of motion which
will make the inadequacy of the picture of a continuous interaction in a short-distance scale
more evident.

8. An effective equation of motion

With (59) and (66) in (55) one could write the electron equation of motion as

maµ − FµνextVν = − 2
3a

2V µ (67)

but it is well known that this could not be a correct equation because it is not self-consistent:
its LHS is orthogonal toV ,

maV = 0 and VFextV = 0 (68)

while its RHS is not,

− 2
3a

2VV = 2
3a

2. (69)

This seems to be paradoxical until one has a clearer idea of what is happening. One must
return to equation (40), where there is a subtle and very important distinction between
its LHS and RHS. Its LHS is entirely determined by the electron instantaneous position,
z(τ ), while its RHS is determined by the sum of contributions from the electron self-
field at all points. The equation of motion is the mathematical description of momentum
conservation in the interaction. The LHS of (40) describes, therefore, the change of the
electron momentum at a point (the electron instantaneous position) while the RHS describes
the momentum carried away by the electron self-field which is distributed over the whole
space. This is a consequence of the imposed dichotomic treatment: while the electron is
described as a discrete and well localized object, a particle, its self-field is a non-localized
object distributed over the entire space and whose contribution to the changes in the electron
must be computed from all these points. It introduces a strong non-locality and excludes the
possibility of a true equation of motion which would give an essentially local description. A
true (in the sense of local) equation of motion for a classical charged particle is then possible
only in the context of discrete interactions mediated by exchanged (classical) photons [11].
The RHS of (67) would be replaced in this case by the momentum of the emitted photon,
while the LHS remains local as it is always defined at a single point, the electron position.
The space-time average of this (then local) equation would reproduce (67).F

µν
extVν on the

LHS of (67) is the spacetime average of the momentum exchanged between the electron
and external charges whileaµ is the electron average acceleration. In the context of the
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LWS (1), equation (67) must, therefore, be regarded as an effective equation that would be
better represented as

maµ − FµνextVν = −〈 23a2V µ〉 (70)

where the term in brackets represents the contribution from the electron self-field:

〈 23a2V µ〉 = lim
ε1→0
ε2→∞

∫
dx3∇ν2µνθ(ρ − ε1)θ(ε2− ρ). (71)

This is more than just a change of notation; it explicitly implies on a clear distinction
between theV inside and theV outside the bracket in (70):

〈V 〉 6= V.
This distinction between the LHS and RHS of (40) is missing in equation (67); it was
deleted by the integration process. It represents the strong non-locality introduced at the
beginning with the hypothesis of a continuous interacting field (1).

It makes no sense, therefore, to multiply (67) or (70) byV . This would be a mixing of
instantaneous and average values. One should instead try to follow the associated physical
picture. The LHS of (40) multiplied byV is null because the force that drives the electron
with the four-velocityV delivers a powerma0V

0 that is equal to the work per unit time
(maV ) realized by this force along theV direction (this, as is well known, is the physical
meaning ofmaV = 0). But this reasoning does not apply to the RHS of (40) multiplied
by V because the flux of radiated energy is through a spherical surfaceρ = ε2, alongK at
each point, not alongV (except atρ = 0, because of (27)); in order to make sense, as one
is doing a balance of the flux rate of energy, one has to add this flux rate from each element
of the integration domain. Based on considerations of symmetry one can anticipate that the
final result must be null: to each point of a spherical hypersurfaceρ = constant,τ = τ2, that
gives a non-zero contribution there is another point giving an equal but with opposite sign
contribution. The RHS of (67) cannot be used for this point-to-point calculation as it just
represents a kind of average or resulting value. For this balance one must start again from
the beginning. Contributions from the electron self-field must always be calculated through
this point-by-point summation, like on the RHS of (40) for the flux of electromagnetic
energy–momentum, through the walls of a Bhabha tube around the charge worldline, in the
limit of ρ → 0. In particular,∫ τ2

τ1

dτ (ma − VFext)V = − lim
ε1→0
ε2→∞

∫
d4x Xµ∇ν2µνθ(ε2, ρ, ε1)θ(τ2, τ, τ1) (72)

where

X =
{
K if ρ > 0

V if ρ = 0.
(73)

X, on the RHS of (72), gives the direction of the flux rate of the radiated energy; on the
LHS this direction is given byV . Observe thatX(τret) is x-dependent and so it does not
commute with

∫
d4x, that is,X inside andX outside the integral on the RHS of (72) give

distinct results and, based on the above arguments, one is saying that (72) shows the correct
way. Its LHS is, of course, null. It will now be shown that the RHS is also null, so that
there is no longer any contradiction. One knows that

∇ν2µν = 1

4π
Fµα∇νF αν = 1

4π
Fµα � Aα (74)
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and by direct calculation one finds that

� Aµ = K2

ρ3
(3ρEaµ + ρ2ȧµ + (3E2+ ρ2ȧK)V

µ). (75)

So, the integrand on the RHS of (72) is null forρ > 0 asK2 = 0 there. For simplicity one
could then just have usedV instead ofX in (72), but see the next section for an alternative
illuminating calculation. Therefore, one just has to verify thatρ2Vµ∇ν2µν |ρ=0 is finite, or
equivalently thatρ3Vµ∇ν2µν |ρ=0 = 0. As

VµF
µν = 1

ρ2
(EKα −Wα) (76)

then

4πρ5Vµ∇ν2µν = −K2(2Eρ2a2+ 3E(1− E2)+ ρ2(ρȧa − EȧK)) (77)

and

lim
ρ→0

ρ3Vµ∇ν2µν = lim
ρ→0

R2(2Eρ2a2+ 3E(1− E2)+ ρ2(ρȧa − EȧK))
ρ4

(78)

and this is null at the limitρ → 0 because

O[2Eρ2a2+ 3E(1− E2)+ ρ3ȧa − ρEȧR] +O[R2] = 3+ 2> 4

according to (32). So, both sides of (72) are equally null and there is no contradiction. This
is in agreement with the fact that due to (2), (4) and to the antisymmetry ofF ,

Vµ∇ν2µν = 1

4π
VµF

µ
α∇νF αν = VµFµαJ α = 0.

9. Using the divergence theorem

For the sake of a better understanding of the meaning ofX in equation (72) its RHS will
be worked out by using the divergence theorem. Then one has∫ τ2

τ1

dτ (ma − VFext)V = lim
ε1→0
ε2→∞

∫
dx4 {2µν∇νXµθ(ε2, ρ, ε1)θ(τ2, τ, τ1)

+Xµ2µν [∇νρ(δ(ρ − ε1)θ(ε2− ρ)− θ(ρ − ε1)δ(ε2− ρ))θ(τ2, τ, τ1)

−Kν(δ(τ − τ1)θ(τ2− τ)− θ(τ − τ1)δ(τ2− τ))θ(ε2, ρ, ε1)]}. (79)

The explicit dependence on∇νXµ makes it clear why one cannot just useK instead of
X in (72): although limρ→0K = V , limρ→0∇K 6= ∇V = −Ka.

For working out the first term on the RHS of (79) one needs (43)–(45) and

∇µKν = ∇µ
(
Rν

ρ

)
= ηµν +KµVν

ρ
− Kν

ρ
∇µρ (80)

2µνηµν = 0. (81)

Then, from (19) andK2 = 0 one has for the upper limit

lim
ε2→∞

∫ ε2

dx42µν∇νKµ = lim
ε2→∞

∫
dτ
∫ ε2 dρ

ρ3
= 0. (82)

For the lower limit∇νXµ = ∇νVµ = −Kνaµ and then, from (19),

4πρ4K2a = aK(K2W 2− 1) = aK(K2+ 1)+ ρ2aKK
2(a2− a2

K)− ρa2
KK

2. (83)
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So,

lim
ρ→0

4π
∫
ρ2dρ K2a = −aK(K

2+ 1)

ρ
+ aKK2(a2− a2

K)ρ − a2
KK

2 ln ρ = 0 (84)

because

lim
ρ→0

aK(K
2+ 1)

ρ
= lim

ρ→0

aR(R
2+ ρ2)

ρ4
= 0 (85)

as

O[aR] +O[R2+ ρ2] = 2+ 4> 4 (86)

and

lim
ρ→0

aKK
2(a2− a2

K)ρ = 0. (87)

For evaluating the limit of the last term of (84) one has considered that

K2a2
K =

R2(aR)2

ρ4

O[K2a2
K ] = 2= O[ρ2]

(88)

to see that

lim
ρ→0

a2
KK

2 ln ρ ∼ lim
ρ→0

ρ2 ln ρ = 0. (89)

It is important to use the appropriate values ofX to have consistent results. The use, for
example, ofX = V in the upper limit or ofX = K in the lower limit would produce
inconsistent results. The second line of (79) is composed of two terms, withρ = ε1 and
ρ = ε2, respectively. For theρ = ε1 term,X = V in the limit and then one has from (19)
that

4πρ4V2∇ρ = (1+K2E)(W 2+ E)+ ρaK
2
(1−K2W 2). (90)

Therefore,

lim
ρ→0

4πρ2V2∇ρ = lim
ρ→0

(
(ρ2+ R2+ R2aR)(ρ

2a2− a2
R − aR)

ρ4

+aR[ρ2+ R2− R2(ρ2a2− a2
R − 2aR)]

2ρ4

)
= 0 (91)

because

O[ρ2+ R2+ R2a2
R] +O[ρ2a2− a2

R − aR] = 4+ 2> 4 (92)

and

O[aR] +O[(ρ2+ R2)− R2(ρ2a2− a2
R − 2aR)] = 2+ 4> 3. (93)

Again one only has consistent results if one uses the correct values ofX in its respective
limiting situation.

For theρ = ε2 term one hasX = K and then

4πρ2K2∇ρ = 1

2

K∇ρ
ρ2
= − 1

2ρ2
.

So, it is null in the limit whenρ →∞.
Finally, the third line of (79) does not contribute becauseρ2K2K ≡ 0 for ρ > 0 and

produces a finite result at the limitingρ = 0, or equivalently:

lim
ρ→0

ρ3K2K = 0.
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K

V
1

V
2

ret
τ

Figure 4. Classical picture of the fundamental quantum
process: atτret an electron with a four-velocityV1,
changes it toV2 by emitting a photon with a four-velocity
K. τret is a singular point on the electron worldline
because of this indeterminacy on its tangent. No infinity
is ever involved.

10. The meaning of the classical field

A strict observation of the two geometric constraints (R2 = 0 and R dR = 0) in
the LWS allows the introduction of the extended causality, the interpretation of these
solutions in terms of creation and annihilation of particles, and the vision of the interacting
electromagnetic field as composed of discrete point-like objects, the classical photons. The
continuous picture of a wave and the idea of its continuous emission are just approximations
valid for large-distance and macroscopic sources; it is justified for the normally large number
of photons involved. The short-distance limit of CED is drastically changed with the
extended causality: old inconsistencies, such as the non-integrability of the self-field energy
tensor, disappears. The paradoxes associated to the electron equation of motion are all
explained with the understanding that this is an effective equation, written in terms of
averaged values and, therefore, limited on its applications and validity. The implicit non-
locality of (70) is a consequence of the explicit bilocality of (1) and consequently of its
energy tensor2: they both depend onR = x − z(τret). Althoughε1→ 0 in (70), the term
〈 23a2V µ〉 comes from the limitingε2→∞. The fundamental (in the sense of irreducible)
electromagnetic interaction is the exchange of a single photon. In classical physics this
can be seen as the intersection ofA(x) with the light-cone generator that connects the two
charges, as depicted in figure 3, and not byA(x) itself, which rather represents the smearing
of this interaction on the charge light-cone. That is why a space integration is necessary
to retrieve the momentum carried out by the photon, which is the meaning of the RHS
of equations (40) and (55). Their RHSs are point-by-point summations of the contribution
of each light-cone generator. Equation (67) cannot therefore be a true equation of motion
because it does not describe the single photon exchange, as required by the fundamental
interaction, but an average of all photons inside the integration domain. This explains why
(67) is not time-reversal invariant as a fundamental equation must be. The energy flux from
the charge is, of course, non-zero at the pointz(τret), as it is detected atx, but it is indeed null
at z(τret±dτ) as one concludes from (59) and (66). This has some noticeable consequences.
It shows that the classical radiation process is discrete in time; this discreteness takes the
(ρ → 0)-limit to be revealed. Atρ > 0 this effect is masqueraded by the average character
of A(x). It is also in direct contradiction to Gauss’s law, which makes no sense if the field
is seen as the effect of a discrete exchange of particle-like objects, unless the field is taken
as the average of these effects in space and time. It requires, therefore, a re-evaluation of
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the physical meaning of this law and the Faraday–Maxwell concept of fields. This question
is also relevant to quantum theories (quantum mechanics and quantum field theory) because
it deals with the reliability of the interaction description. How far does the classical field
(that, in quantum field theory, one wants to quantize) really represents the experimentally
observed interactions? This is closely related to the distinct contents of the Coulomb’s and
Gauss’ law. While the first one gives a strict description of what is actually observed, i.e.
a force between two charges, acting on each one along the straight line connecting them,
the second one contains an extra assumption (the Faraday–Maxwell concept of field) that
effectivelyextendsthis effect, observed at the charge position only, to all points in the space
surrounding each one of the charges, regardless of the presence or not of the other.

The concept of a field existing everywhere around a single charge, regardless the
presence of any other charge is an extrapolation of what is effectively observed. There
is, therefore, a very deep distinction between Coulomb’s law and Gauss’s laws. This last
one describes theinferred electric field as existing around a single charge, independent
of the presence of the other charge. The electric field, as it is well known, is extracted
from the Gauss’s law through the integration of its flux across a closed surface, having the
appropriate symmetry,enclosingthe charge,

E(x) = n̂
∫ x
V
ρ dv∫

∂V
dS

(94)

where n̂ is the unit vector normal to the surface∂V . Equation (94) adds evidence to the
effective or average character of the Maxwell’s concept of field; it also gives a hint to the
meaning and origin of the field singularity. If the electric field can be visualized in terms of
exchanged photons, then according to (94), the frequency or the number of these exchanged
photons must be proportional to the enclosed net charge. If we takeE, as suggested by
Gauss’ law, as a measure of the average number of photons emitted/absorbed by a point
charge, we can schematically write,E ∼ n

4πr2 , wheren is the number of photon per unit time
crossing an spherical surface of radiusr and centred on the charge. Then, the divergence of
E whenr → 0 does not represent a physical fact such as an increasing number of photons,
but just an increasing average number of photons per unit area, as the number of photons
remains constant but the area tends to zero. So, a field singularity would have no physical
meaning, it would just be a consequence of this average nature of the Maxwell’s field.

In the modern perspective of seeing a fundamental electromagnetic interaction as the
result of a single-photon exchange, the classical electromagnetic field describes rather the
smearing of this interaction in time and in the space around each charge. No wonder one
finds inconsistencies in the short-distance limit theory if one is replacing the interaction by
its space average.
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